A 3D-printed, functionally graded soft robot powered by combustion

نویسندگان

  • M. T. Tolley
  • J. T. B. Overvelde
  • J. C. Weaver
  • Nicholas W. Bartlett
  • Michael T. Tolley
  • Johannes T.B. Overvelde
  • James C. Weaver
  • Bobak Mosadegh
  • Katia Bertoldi
  • George M. Whitesides
  • Robert J. Wood
چکیده

Roboticists have begun to design biologically inspired robots with soft or partially soft bodies, which have the potential to be more robust and adaptable, and safer for human interaction, as compared to traditional rigid robots. However, key challenges in the design and manufacture of soft robots include the complex fabrication processes and the interfacing of soft and rigid components. We employed multi-material 3D printing to manufacture a combustionpowered robot whose body transitions from a rigid core to a soft exterior. This stiffness gradient, spanning three orders of magnitude in modulus, enables reliable interfacing between rigid driving components (controller, battery, etc.) and the primarily soft body, and also enhances performance. Powered by the combustion of butane and oxygen, this robot is able to perform untethered jumping. One Sentence Summary: Interfacing of soft and rigid components through a gradient of material properties increases the robustness of an untethered, jumping soft robot powered by combustion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOFT ROBOTICS. A 3D-printed, functionally graded soft robot powered by combustion.

Roboticists have begun to design biologically inspired robots with soft or partially soft bodies, which have the potential to be more robust and adaptable, and safer for human interaction, than traditional rigid robots. However, key challenges in the design and manufacture of soft robots include the complex fabrication processes and the interfacing of soft and rigid components. We used multimat...

متن کامل

A New Quasi-3D Model for Functionally Graded Plates

This article investigates the static behavior of functionally graded plate under mechanical loads by using a new quasi 3D model. The theory is designated as fifth-order shear and normal deformation theory (FOSNDT). Properties of functionally graded material are graded across the transverse direction by using the rule of mixture i.e. power-law. The effect of thickness stretching is considered to...

متن کامل

A Quasi-3D Polynomial Shear and Normal Deformation Theory for Laminated Composite, Sandwich, and Functionally Graded Beams

Bending analyses of isotropic, functionally graded, laminated composite, and sandwich beams are carried out using a quasi-3D polynomial shear and normal deformation theory. The most important feature of the proposed theory is that it considers the effects of transverse shear and transverse normal deformations. It accounts for parabolic variations in the strain/stress produced by transverse shea...

متن کامل

Probabilistic Evaluation on the Free Vibration of Functionally Graded Material Plates Using 3D Solution and Meta-Model Methods

This paper presents a probabilistic assessment on the free vibration analysis of functionally graded material plates, including layers with magneto-electro-elastic properties, using the 3D solution and surrogate models. The plate is located on an elastic foundation and the intra-layer slipping effect is also considered in the analysis by employing the generalized intra-layer spring model. Due t...

متن کامل

Magnetic Stability of Functionally Graded Soft Ferromagnetic Porous Rectangular Plate

This study presents critical buckling of functionally graded soft ferromagnetic porous (FGFP) rectangular plates, under magnetic field with simply supported boundary condition. Equilibrium and stability equations of a porous rectangular plate in transverse magnetic field are derived. The geometrical nonlinearities are considered in the Love-Kirchhoff hypothesis sense. The formulations are compa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015